Aims:
• To complement lecture material in understanding the principles of inference with Bayesian networks.
• To gain experience with implementing Bayesian inference and Gaussian Processes in software.
• To produce some assessable work for this subject.
锐泽代写,专门治愈您的坏心情,最近开学的同学比较多,一下子麻爪了,各种academic writing也逐渐升温了,感觉现在忙的像个新生!卡在死胡同里找不到突破口,risepaper是您最明事理的留学写作顾问!
选择锐泽留学咨询,完美解决学术难题,闲坐吃瓜群众。
繁重的作业让人心情难以平复,代做的好多门coursework正在火热进行中,总体感觉这些course比正课要简单许多,有的甚至加班几天便可以全部搞定。
从内容来看,也不显得那么枯燥,内容实用性和趣味性增添了很多。闲来没事预定几个微博大瓜,做一做吃瓜群众,浏览一下娱乐圈的各种八卦!唉,小编的生活就是这样朴实无华,且枯燥!
题目标签是机器学习,以下观点来自机器学习中常用的Gaussian process
用法,不是随机过程中的更加一般化的Gaussian process介绍。
就拿ML中经典的Gaussian process(GP) regression
举例说明吧,做个简单粗暴的介绍。
一种理解GP regression的方式是为数据的回归值建立联合分布。
一些AI顶会里Self-Supervised Learning领域用到计算神经
知识的例子:
Representation Learning with Contrastive Predictive Coding
- Rajesh Rao – Predictive Coding paper
Barlow-Twins by FAIR
- Neuroscientist Barlow’s paper – reduce redundacy – connections to sparse coding/efficient coding
SlowFast Network by FAIR
- Inspirations from P-cells and M-cells in Retina Ganglion Cells
Origami in N dimensions: How feed-forward networks
manufacture linear separability
Deep Neural Networks as Gaussian Processes