Department of Mechanical Engineering

MCEN90026 SOLID MECHANICS

Semester 2, 2022 Supplementary Exam

Online open-book strict-time-limit exam and submission via Canvas Assignment

This paper has 11 pages including this page.

Timing微信r i sepaper

- Exam start time: 3pmThursday $15^{\text {th }}$ December 2022
- Exam end time: $\quad 5.45 \mathrm{pm}$ Thursday $15^{\text {th }}$ December 2022; you must submit all responses by 5.45 pm.
- Exam duration: 165 minutes in total composed of
- Reading time: 15 minutes
- Writing time: 120 minutes
- Submission time: 30 minutes from 5.15 pm to 5.45 pm Thursday $15^{\text {th }}$ December 2022

Alternative Exam Arrangements (AEAs) time settings may vary from the above.

Authorised materials

This exam will be conducted in an online open-book format and the following materials are permitted:

- Any material loaded onto Canvas as part of the subject content
- Notes (printed, hand-written, and digital/electronic)
- Textbooks
- Online books and materials
- Language dictionaries
- Calculators (any model), computers, electronic tablets, pens, rulers, etc.

Academic misconduct during exams

- Collusion is not allowed under any circumstances. Collusion includes, but is not limited to, talking to, phoning, emailing, texting or using the internet to communicate with other students. Similarly, you cannot communicate with any other person via any means about the content of this exam during the examination time. If another studentcontacts you during the examination period, please inform the subject coordinator immediately.
- Plagiarism/copying is not allowed under any circumstances. Your answers to the exam must be in your own words and not directly copied from lecture notes, tutorial
materials, the internet or study notes you have prepared with your friends. You may refer to sources, but answers should be written in your own words. This also applies to programming (code) related answers. Code must be writtenon your own displaying originality in the content.
- Any similarity detected between your answers, the ânswers from other students and/or from the internet or other sources will beinvestigated and may result in academic misconduct.

Instructions to students

- You will have only one attempt at completing this online exam.
- This paper consists of three questions. Question 1, Question 2 and Question 3.
- Attempt any two out of the three questions.
- YOU ARE REQUIRED TO ANSWER ONLY TWO QUESTIONS.
- The recommended browser for this exam is Google Chrome.
- Total marks for this-paper are 100.
- For this remotely conducted exam, you may write answers during reading time.
- Do not write answers during submission time. This time is for submitting your work.
- For file upload:
- Write legibly, preferably in blue or black pen
- You may use an electronic tablet to write your answers, but all answers must be written using a stylus pen or similar.
- Ensure your student number is written on each answer page that you upload
- Start each question on a new page and write the question number in the top right-hand corner
- Number each page prior to submission to indicate the order of the pages
- Show all working for each question
- Responses that span multiple images need be compiled into single PDF documents.
- The Genius Scan phone app can be used to generate such PDFs.
- PDFs of responses written on electronic tablets are also acceptable.

Communication and issues during the exam

- Any updates to the exam will be made by the Subject Coordinator via a Canvas Announcement during the exam.
- If you need to ask any exam content-related questions during the exam, please contact your Subject Coordinator via the dedicated Exam Support Chat tool in your Canvas subject immediately.
- If you run into any issues uploading your responses, please email your responses to pvlee@unimelb.edu.au brior to the end of your submission time. In your email, attach your responses and clearly state the subject code, your name and Student ID.
- For all technicaland wellbeing enquiries, please contact Stop 1/13MELB via:

[^0]
INSTRUCTIONS

This paper consists of three questions. Question 1 (50 Marks), Question 2 (50 Marks) and Question 3 (50 Marks). Attempt any two out of the three questions.

QUESTION 1 (50 Marks)

Question 1a (20 Marks微信r isepaper)

Consider an axisymmetric annular plate with an outer radius, a and an inner radius, b completely fixed at the inner radius and free at the outer radius. A positive bending moment per unit length, M_{0}, is applied at the outer radius.

Determine the equatiôns for the maximum displacement and the reaction moments at the inner radius.

Note: State allyour assumptions and boundary conditions clearly.

Figure 1a: Thin circular plate with a positive bending moment

Question 1b (15 Marks)

A homogenous steel disc with an outer diameter of 600 mm and inner diameter of 300 mm is shrunk fit onto a rotating steel shaft with an initial interference of 0.15 mm .

Find:

- The initial contact pressure.

- The speed at which the disc becomes loose on the shaft.

Neglect shaft expansion. Assume the material properties of steel as follows:
Young's Modulus E $=207 \mathrm{GN} / \mathrm{m}^{2}$
Poisson's ratio, $v=0.3$
Density, $\rho=7880 \mathrm{~kg} / \mathrm{m}^{3}$

(Question 1 continues on next page...)

Question 1c (15 Marks微信r i sepaper)

Figure 1c shows a water storage tank with 20 mm uniform wall thickness. The tank is fixed at the top end (A-A). The tank is made up of cylindrical section joined to a spherical cap at B-B. The joint is reinforced by welding an angle-section ring with a cross-sectional area of $5000 \mathrm{~mm}^{2}$. Calculate,
i. the maximum stresses in the cylindrical section of the tank,
ii. the maximum stresses in the spherical cap of the tank,
iii. the hoop stress in the reinforcing ring,
when the water is at the levelshown in figure 1c.
Specific weight of water is $9.81 \mathrm{kN} / \mathrm{m}^{3}$.
(Note: consider the radius of the tank and the wall thickness to determine if this is a thick or thin wall pressure vessel.)

---- End of Question 1 ----

QUESTION 2 (50 Marks)

Question 2a (20 Marks)

A high-strength steel disc 30 mm thick with an outer diameter of 1200 mm and inner diameter of 400 mm is rotating at 120 Hz .

Young's Modulus, $\mathrm{E}=210 \mathrm{GN} / \mathrm{m}^{2}$
Poisson's ratio, $v=0.28$
Density, $\rho=7880 \mathrm{~kg} / \mathrm{m}^{3}$
Yield Strength $S_{y}=1200 \mathrm{MN} / \mathrm{m}^{2}$

- Determine the radial and tangential stress distributions as functions of radial position ' r '. Tabalate the values in 100 mm increments of ' r ' and plot the distribution neatly in your sketch. You do not need to use graph paper.

Find the speed at which yielding starts.

Question 2b (15 Marks)

A bronze bush of 25 mm wall thickness is to be shrunk onto a steel shaft of 100 mm in diameter. If an interface pressure of $69 \mathrm{MN} / \mathrm{m}^{2}$ is required, determine the interference between the bush and the shaft.

Material properties are given as below:
Steel: $\mathrm{E}=207 G N / m^{2}, v=0.28$
Bronze: $\mathrm{E}=100 \mathrm{GN} / \mathrm{m}^{2}, v=0.29$

(Question 2 continues on next page...)

Question 2c (15 Marks)

A beam with T cross-section as shown in figure 2c below. The flange and web of the crosssection are each 12 mm thick, the flange width is 100 mm , and theoverall depth of the section is 100 mm . The centroid of the section is at 70.6 mm from the bottom of the web and the second moment of area, $I_{z Z}$ of the section about a line through the centroid and parallel to the flange is $2.03 \times 10^{6} \mathrm{~mm}^{2}$.

- Determine the value of the shape factor.

Figure 2c: A T-bar section in which YY is the only axis of symmetry

QUESTION 3 (50 Marks)

Question 3a (15 Marks)

A duplex thick-walled cylinder has an inner radius $a=100 \mathrm{~mm}$, an outer radius $b=300 \mathrm{~mm}$, and an interface radius $c=200 \mathrm{~mm}$, as shown in figure 3a. Initially, the outer radius of the inner cylinder is larger than the inner radius of the outen cylinder by an amount of δ. For steel cylinder $(E=200 G P a)$ and a shrinkage factor $\delta / c=0.001$, determine the stresses in the cylinder at $r=100 \mathrm{~mm}, r=150 \mathrm{~mm}$ and $r=300 \mathrm{~mm}$.

Figure 3a: A duplex thick-walled cylinder

Question 3b（20 Marks）

For the beam shown in Figure 3b，the bending moment capacity（i．e．plastic hinge moment）is M_{p} throughout．
－There are two plausible collapse mechanisms．Gonsider both to determine the critical load（i．e．，true collapse load，P_{o} ）for plastic collapse．
（Hint：Use the virtual work approach $M \times \theta$ or $P \times \delta$ ）微信 r i sepaper 咨询．
Your solution must include labelled sketches．
Check that the values of moment throughout the beam are less than or equal to the limiting plastic hinge moment M_{p} ，when suggesting a value for P_{o} ．Bending moment diagrams for both plausible collapse mechanisms should be sketched．

Figure 3b：Plastic collapse of the beam．

Question 3c（15 Marks资询微信r i sepaper）

A steel flywheel 25 mm thick with an outer diameter if 1 m and an inner diameter of 200 mm is rotating at 100 Hz as shown in figure 3c．

Material properties of steel are：

$$
E=210 G P a, \rho=7880 \mathrm{~kg} \mathrm{~mm}^{3}, v=0.28
$$

－Determine the radial and tangential stress distributions as functions of radial position，r and sketch the distribution neatly，you do not need to use graph paper．
－Determine the radialdeflection of the outer radius of the flywheel．
Hint：You may need to use Hooke＇s law．

Figure 3c：A steel flywheel

[^0]: - Phone: 136352 (inside Australia) and +61390355511 (outside Australia)
 - Web chat: https://ask.unimelb.edu.au/app/ask?chat

